SCIENCE HISTORY IN PROFILES
by. B. BOLOTOVSKY, D. Sc. (Physics and Mathematics)
OF STARS, GALAXIES AND THE EXPANDING UNIVERSE
As the work on the H-bomb was moving towards fruition, Dr. Sakharov
began to devote more of his time to his favorite theoretic physics. He
focused his gaze on phenomena just as impressive as the bomb. As for the
H-bomb, its blast releases vast amounts of energy generated by forces contained
in truly microscopic space. Dr. Sakharov turned his attention to a space
of entirely different dimensions. In our expanding Universe stars and galaxies
are "flying away" from a hypothetical center and the further
is a space object from the center the greater is its velocity. This picture
leads us to the assumption that originally the whole matter of the Universe
was compressed within a very small volume, much smaller than the size of
an atom. The den- sity of the energy it contained much have been truly
staggering. This original "core" was like a boiling pot in which
elementary particles were constantly born, absorbed, disintegrating and
undergoing all sorts of transformations. After the bang, and as the initial
matter began to scatter, its temperature and density continued to drop,
the interaction among the particles weakened, leading to the formation
of atomic nuclei, stars, systems of planets and galaxies, finally produc-
ing the Universe as we see it today. If this hypothesis is generally correct,
then we would be right to assume that the properties of the bound- less
Universe are governed by the laws that gov- erned the "behavior"
of matter within the initial tiny "core." Dr. Sakharov turned
his attention to problems betraying a cause-and-effect connec- tion between
things infinitely great and infinitely small.
In his work published in 1967 he tried to answer the question of how the
Universe has reached its present stage. In the part of the Universe which
we know there are heavy ele- mentary particles called protons, but no corre-
sponding anti-protons. But according to theory a proton is always born
in pair with an anti-proton. And the two cease to exist also in pairs with
the proton annihilating its opposite. This being so, there should be just
as many anti-protons in our Universe as there are protons. Alas, this is
not really so. in his publication Dr. Sakharov offered a brilliant explanation
of this puzzling assymetry. If, as was generally assumed, a proton can
only be annihilated by an anti-proton, protons would have to exist forever
in a world devoid of anti-pro- tons. In other words, the proton was regarded
as a stable particle. In his work in 1967 Dr. Sakharov suggested that this
is not so. A proton is unstable and disintegrates into a mu-meson and two
neutrinos. The anti-proton also disinte- grates, but in its own and "opposite"
way. Anti- protons formed when the Universe was still young have all died
down since, but protons linger on. If Dr. Sakharov's view is correct, it
leaves no hope for an "anti-world," a world of antimatter, a
mirror image of our own.
This work led to an important conclusion which could be ascertained experimentally.
If proton is unstable - why not try and measure its lifetime? Such attempts
have been made in many labora- tories around the world and Dr. Sakharov
was looking forward to the results as long as he lived. On the other hand,
it can very well be so that the lifetime of a proton is something very
long, much longer than the time of these observations.
It is interesting to note that ten years after this publication, several
physicists, including Prof. Abdus Salam and Prof. Stieven Weinberg, sug-
gested a Great Unification Theory for the weak, strong and electromagnetic
interactions of elementary particles. This theory regards from a common
perspective phenomena of an apparently abso- lutely different nature. And
it too suggests that the proton is an unstable particle.
Had the hypothesis about the instability of the proton been supported by
experimental data when Dr. Andrey Sakharov was still alive, he would have
certainly been awarded a Nobel Prize for physics in addition to his Nobel
Peace Prize.
In physics he was in his "natural element," dis- cerning by intuition
things which took others whole decades to grasp. This remarkable insight
was his natural gift, like the gift of an artist, which defies any logical
explanations.
********************************************
Sakharov pioneered a method of obtaining magnetic fields of record strength.
This method remains unsurpassed to this day.
********************************************
HIS INTUITION WAS TRULY EXCEPTIONAL
Ever since he was a young man, Dr. Sakharov was noted for taking
absolutely unorthodox views of commonly accepted things. His judgements
and opinions puzzled even experts at first sight.
Here is just one, but fairly typical episode. When young Sakharov was taking
his exam for the degree of Candidate of Science, the exami- nation board
included three leading authorities in the field: lgor Tamm (later a member
of the Academy), Sergey Rytov and Yevgeniy Feinberg (both later elected
Corresponding Members of the Academy), lgor Tamm was puzzled by one of
Sakharov's answers, and when members of the board were later discussing
the results of the examination, he communicated his misgivings to Rytov
and Feinberg. All said they failed to follow Sakharov's line of reasoning
and decided that he did not deserve the top mark. Back at home that evening
Tamm kept thinking about Sakharov's answer. Finally he grasped his point,
which was absolutely correct. And just at that moment the telephone rang
and Feinberg called to say they all had to appologize to Sakharov and correct
the mark. And that was exactly what they did on the following day. I heard
this story first from Academician Tamm and later from Prof. Feinberg. In
1967, Dr. Sakharov published the first in a series of works on the nature
of gravitation. These publications offered a novel and most promising approach
to gravitational forces.
Gravitation was always regarded as a basic natural phenomenon, more "basic"
than many others. The G-constant is as "constant" as the charge
of the electron or the velocity of light. History of science remembers
outstanding natu- ral scientists and philosophers who tried to explain
gravitation in terms of mechanics and later of electricity, or electrodynamics
to be more exact. Following the failure of these attempts, gravitation
was simply called together with all other and really fundamental forces,
like the elec- tromagnetic ones, for example.
Our modern views on gravitation rest on the general relativity theory formulated
by Einstein. According to this theory, the properties of space change in
the vicinity of massive bodies, with the space being "bent" or
"distorted," so that the shortest distance between two points
is no longer a straight line, but a curve. One common illustra- tion of
this is a ray of light which deviates from a straight path near the Sun.
Let us now take a copper strip and bend it slightly. When the pressure
is off the strip becomes straight again. When we bend the strip we perform
some work and the strip accumulates a certain amount of energy at the bend.
This energy is later expended to restore the strip to its original shape.
And this is exactly how Dr. Sakharov explained the "bending"
of space in the theory of relativity. The space "unbends" (and
becomes Euclidean again), when these large bodies, or masses, are removed.
Dr. Sakharov described this property of space (and time) as "metrFc
elas- ticity". The greater is the "bending" of space, the
greater energy is stored therein. Dr. Sakharov assumed that this energy,
stored in distorted space, is the energy of the fields describing material
particles. If one examines the energy of material fields in non-distorted
space and then try and calculate this same value in distorted one and compare
the two results, one can measure the energy expended on the distortion.
This of course, is a very rough and general description of Dr. Sakharov's
ides.
Within the general theory of relativity equa- tions describing the gravitational
field are obtained with the help of a function postulated by Einstein and
Gilbert (the action function). Using it one can obtain an equation describing
the prop- erties of space and time. And it may be interest- ing to note
at this point that the Einstein-Gilbert function was not calculated, but
just postulated.
Having said all that, let us now set aside the relativity theory and consider
in terms of the quantum theory a certain field describing parti- cles of
a specific kind. An equation describing the quantum field can be obtained
if we know the function of action of this field. This is different from
the Einstein-Gilbert action, and quantum field equations are different
from those of the general relativity theory.
Let us consider the action function for a quan- tum field in two cases
- a straight and a distorted space. The difference between the two action
functions describes the distortion of space. Dr. Sakharov demonstrated
that under certain condi- tions this change of action for a quantum field
is the same as the Einstein-Gilbert action in the general relativity theory.
This leads to the same equations as in the general relativity theory, but
now these are not postulated, but derived from the quantum field theory.
And that means (if Dr. Sakharov's theory is right) that gravitation is
not something basic and fundamental, but secondary and deriving from the
quantum theory. Dr. Sakharov also obtained an expression describing the
gravitational constant through such constants as the velocity of light,
the Plank quantum con- stant and a certain minimal length. In this manner
Dr. Sakharov obtained the general relativity equation from quantum field
theory equations. Gravitation - this basic force of nature - has lost its
status of a fundamental interaction. To my mind, Dr. Sakharov's works on
this matter have not yet received the recognition they deserve.
HE SAW WHAT OTHERS OVERLOOKED
This phrase applies to Dr. Sakharov the scien- tist and Dr. Sakharov
the public figure. And when he saw what he saw, he made his views public.
This gift of insight, to my mind, is the hallmark of the creative personality,
and Dr. Sakharov was just that. He was among the first to alert the pub-
lic to the grave menace from nuclear arms to all living beings on this
planet. I was told that before each new H-bomb test, he would lock himself
up in his room, calculating how many more human lives it would claim, including
cases of cancer, leukemia and congenital deformities. These cal- culations,
which often lasted for weeks, were done as professionally as everything
else he did. His conclusions did a lot to change our ideas of radiation
hazards.
People are usually afraid of heavy doses of radiation causing radiation
sickness. In a high- altitude bomb test there are no any such immedi- ate
casualties. But, as Dr. Sakharov pointed out, an H-bomb blast released
a flood of neutrons into the atmosphere. These are captured by nitrogen
********************************************
Had Sakharov's ideas on the instability of the proton received experimental
proof in his lifetime, he could have been awarded a Nobel Prize for physics
in addition to his Nobel Peace Prize.
********************************************
nuclei, producing a radioactive isotope of carbon which has a life of about
six thousand years. This radioactive isotope gets into the human body,
food chains and water, affecting many succes- sive generations. According
to Dr. Sakharov a bomb test of one megaton would claim more than 6 thousand
human lives over a period of 8 thou- sand years. And there were atmospheric
nuclear weapons tests of 100 megatons and more. All such tests were denounced
by Dr. Sakharov as mass murder, and he pressed for a comprehen- sive test
ban. His views were summed up in an article published in a collection of
papers called "Soviet Scientists on Dangers of Nuclear Weapons Tests"
published in Moscow in 1959. His protests, however, were dismissed as ill-con-
sidered whims and were frowned upon by Nikita Khruschev. The then Soviet
leadership was all in favor of keeping up the tests at any cost.
But the persistent anti-test campaign of Dr. Sakharov was not in vain and
in 1963 the nuclear powers signed the test ban treaty in three media -
water, air and on the ground, in the subsequent years the scientist continued
to focus his atten- tion problems of radiation safety. After the Chernobyl
catastrophe he suggested placing nuclear stations in underground tunnels.
As for
********************************************
Sakharov's remarkable intuition let him see things which remained hidden
from others.
********************************************
the increased costs, he pointed out that the cost of dealing with the aftermath
of Chernobyl exceeded the building costs of a score of under- ground stations.
Among the discouragingly few supporters of Dr. Sakharov's idea are men
like Dr. Edward Teller.
All who followed the public statements of Dr. Sakharov were impressed with
his courage. I even thought he simply lacked the instinct of self- preservation.
I know now that he was so fearless because he was a man of inner freedom
in a country which was not free. The roots of his courage was his erudite
knowledge and his per- sonal kindness. When the Sakharovs were in their
exile in Gorky, my feeling was that they were more free than we who were
allowed to visit them, more free than their captors.
After his return from the exile, Dr. Sakharov plunged into public campaigning
on vital issues of global importance, like nuclear safety and pre- vention
of ecological catastrophes. In dealing with these issues he relied on his
vast store of scientific knowledge and experience.
Here is just one example of this work. Two years after his return from
the Gorky exile, in October 1988, there was a Soviet-American sem- inar
in Leningrad on earthquake prediction. Dr. Sakharov addressed the participants
with a report in which he suggested detonating small nuclear charges at
shallow depth in earthquake- prone areas in order to reduce the accumulating
tension in the crust. This idea may very well be of considerable practical
importance.
In an interview for an Estonian youth newspa- per Dr. Sakharov said his
might well be an exceptional career. He said he was expected to do more
than he really could. "I merely tried to live up to that challenge."
"Do you believe in des- tiny?", asked the reporter. "All
I believe in," was the answer, "is some inner logic of events.
And not only. in human life, but in the life of this world in general,
i don't think there is. any such thing as destiny. Our future is uncertain
and unpre- dictable. It is we ourselves who are building and shaping this
future through a process of endless- ly complex interactions."
The more we learn about men like Dr. Sakharov the better we become ourselves.
.Men like him are our hope for the future.